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Abstract

A multiple shooting procedure in coupled angular momentum spaces is used to
calculate the Zeeman energy levels of the hydrogen atom. The method is found
to deal efficiently with the low field splittings of initially degenerate states,
including some Rydberg states.

PACS numbers: 03.65.Ge, 32.60.+i

1. Introduction

In a recent work we have shown that a multi-purpose iterative moment algorithm can be used
to calculate the perturbed energy levels of a hydrogen atom in both electric and magnetic
fields [1]. Because the moment method used a particularly simple type of basis function it was
only able to deal with a restricted family of non-degenerate states, although for these states
it produced results of high accuracy. For the case of the Zeeman effect the method could
deal with the 3d states of magnetic quantum numbers ±1 and ±2, but not with the 3d state
of magnetic quantum number 0, since that state is coupled by the magnetic field operator to
the 3s state, with which it is initially degenerate. On seeking a simple way to deal with the
Zeeman effect for such degenerate states we noted that two methods published years ago can
be developed to give an efficient approach to the problem.

If the simple additive spin and orbital terms are omitted then we can take the non-relativistic
Hamiltonian (in atomic units) for the problem in the form

H = −(1/2)∇2 − Z/r + (γ 2/8)(x2 + y2). (1)

The decomposition x2 + y2 = (1/3)[2r2 – (3z2 – r2)] splits the magnetic field term into
components with angular momentum L = 0 and L = 2, respectively. Using the L = 0
magnetic field operator γ 2r2/12 alone gives the spherical field approximation [2, 3]. This
is a good approximation for s states in weak fields, since a magnetic field of 50 T is about
the limit for a terrestrial magnet and yet only corresponds to a γ value of 0.000 213. A
spherical approximation is still possible for non-s states. If the expectation value of (x2 + y2) is
F(L, M)〈r2〉 for a state with the angular momentum quantum numbers L and M, then the operator
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(γ 2/8) F(L, M)r2 serves as the radial operator to be used in the spherical approximation. The
rest of the magnetic field operator gives zero energy shift in first order and so for weak fields
we can estimate the energy by solving the Schrödinger equation for a hydrogen atom with
a radial perturbing field. For the initially degenerate 3s and 3d0 states the two states have
F(L, M) which differ slightly. The 3d0 one (5/84) is smaller than the 3s one (1/12) and the
value of 〈r2〉 is also less for the 3d0 state, so that in lowest order the 3d0 state has a lower
energy than the 3s state. Thus the spherical approximation of [2, 3] predicts a splitting of the
originally degenerate level even before we turn on the terms in the potential which couple the
two states and convert the wavefunction into a linear combination of the nominally 3s and 3d
wavefunctions. What the radial effective potential does is to account for the coupling to all
other states of the same angular momentum as the initial state (including continuum states).
Turning on the residual interaction produces a repulsion between the close partners in the split
level and so the order of the levels in the 3d–3s pair remains as predicted by the spherical
model. To work out how the splitting actually increases with the magnetic field strength we
need a detailed calculation which takes into account all the coupling between states of several
different angular momenta which is produced by the L = 2 term in the magnetic field operator.

In [4] a method was produced which could handle the problem. However, as presented in
[4] the method involved very slow calculations, which can best be explained by describing a
typical example. To calculate the energy of a 1s state a speedy shooting calculation was carried
out along the L = 0 column of an array to find an approximate energy (based on the spherical
approximation). A slow diffusion/relaxation process was then carried out along the network
of array columns corresponding to the other angular momenta, which were coupled to the L =
0 column by the L = 2 terms in the magnetic field operator. The back coupling from the other
columns to the L = 0 column then changed the eigenvalue produced by the shooting process
and so on. After a long time the whole network settled down to an equilibrium distribution
of values and the shooting eigenvalue stabilized at the perturbed energy. In [4] only single
precision calculations were performed. It has now been found how to improve the original
calculational method by performing speedy shooting along all the columns. The resulting
improvement in the calculations makes it feasible to obtain energies of high accuracy when
double precision is used.

In section 2 we describe the method of calculation. Section 3 then gives a simple example
to show how the method can indicate the effect on the energy of including more angular
momentum states in the basis set. Section 4 deals with degenerate states arising from levels
with principal quantum numbers 3, 4 and 5. Section 5 presents some recent results for Rydberg
states.

A brief appendix gives more detail about the computational method.

2. The basic recurrence relations

Much of the basic theory was already presented in [4] but for completeness we give a brief
summary of the results here. We expand the perturbed wavefunction in the form

ψ =
∑

N,L

W(N,L)exp(−βr)rNYM
L (θ, φ), (2)

where YM
L (θ , φ) is an unnormalized spherical harmonic which is the product of a factor

exp(iMφ) and an associated Legendre polynomial P M
L (μ) [4]. We now act on this postulated

wavefunction with the Hamiltonian in equation (1), noting that the term x2 + y2 can be written
as r2 (1 – μ2). Since all of the other terms are spherically symmetric it is the second part of
this term which couples the different angular momentum terms appearing in the wavefunction,
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while the kinetic energy operator and the various powers of r in the Hamiltonian produce
couplings which increase or decrease the power of r. Proceeding in the spirit of a Hill
determinant calculation we can extract the coefficient of the typical term shown in (2) and
obtain the recurrence relation

1/2(N + 2 − L)(N + 3 + L)W(N + 2, L) = [(N + 2)β − Z]W(N + 1, L)

− [E + β2/2]W(N,L) + λ[D(L)W(N − 2, L)

+ A(L + 2)W(N − 2, L + 2)] + B(L − 2)W(N − 2, L − 2)], (3)

where λ = γ 2/8 and the coefficients arising from the angular momentum coupling are

A(L) = −(L + M)(L + M − 1)

(2L + 1)(2L − 1)
(4)

B(L) = −(L + 1 − M)(L + 2 − M)

(2L + 1)(2L + 3)
(5)

D(L) = −A(M,L) − B(M.L). (6)

Here a warning about notation is necessary. To simplify the equations the magnetic quantum
number M, which is invariant throughout a particular calculation, is omitted from the symbols.
For example an extra identical M symbol in every term of (3) would simply complicate the
equation and would be essentially redundant in terms of providing extra information. More of
the mathematical steps used in the derivation of (3) can be found in [4]. In the present work
we concentrate on the specific task of extracting the perturbed eigenvalues from (3).

We first impose the constraint that W(N, L) is zero for N < L (so as to retain only regular
wavefunctions) and that it is also zero for N > NU (N upper) where NU is some large integer
which we use to keep a finite basis set. L will also have an upper value LU (L upper), which
will be increased gradually to study the effects of including more angular momenta into the
basis set. If the A and B terms are omitted then the resulting problem becomes that for the
effective spherical potential introduced in [1].

To treat the full Zeeman problem we turn on the A and B terms in (3) and set up a large
array with rows being labelled by N and columns by L. To find, for example, the perturbed
energy arising from the 2p0 state we use the initial trial energy −0.125, set M = 0 in all terms
and calculated coefficients and shoot along the L = 1 column to find the energy for which we
have W(NU, 1) = 0. This gives us the spherical approximation result. We next shoot along
the L = 3 column, not to find the energy but to find the column of W(N, 3) values which gives
W(NU, 3) = 0 in the presence of the coupling to the set of W(N, 1) values which has just been
established. Shooting along the L = 1 column now gives a shifted energy and so on. After a
few cycles the values in the L = 1 and L = 3 columns settle down, as does the calculated energy.
NU can be gradually increased to ensure that we have included plenty of radial functions to
reach the correct limit for each of the two angular momenta. The final result will then be the
best energy obtainable using a basis set of L = 1 and L = 3 functions. This result is universal,
in the sense that it will also be valid for conventional matrix calculations using basis sets. To
extend the range of coupled angular momenta we include the L = 5 column in the cycle of
shooting calculations, and so on. As the values of NU and LU are increased we eventually
reach a limiting energy which is the best (lowest) one and can be taken to be the required
Zeeman energy. This method of calculating makes quite visible the role played by the basis
functions of a particular angular momentum.

The role of the variable parameter β merits a separate discussion. In the calculations β was
adjusted empirically so as to ascertain how its value affected the progress of the calculation.
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Table 1. The multiple shooting energies of the 1s hydrogen groundstate as a function of the
maximum L value allowed in the basis functions. The values γ = 0.3 and β = 2.0 were used
throughout.

L E

0 −0.478 928 499 7381
2 −0.479 185 586 0309
4 −0.479 186 544 1567
6 −0.479 186 552 7657
8 −0.479 186 552 8985
10 −0.479 186 552 9014
12 −0.479 186 552 9015

It was found that as β varies the NU value, i.e. the number of radial terms needed to saturate
the contribution from each L component, increases or decreases. β was accordingly adjusted
by trial and error so as to achieve the limiting energy for a given set of L columns with a
reasonably small (not necessarily minimum) NU value. It was found that for very small fields
the ‘natural’ (zero field) β value 1/n (for principal quantum number n) is satisfactory but
that as γ increases the β value needed to obtain stable and quickly converging results (as NU
and LU increase) becomes much larger than the zero-field value. In the tables we give the β

value used (although a range of values around the cited value will serve equally well). Since
the values of the W(N, L) vary by many orders of magnitude throughout the array it is an
advantage to set the initial and fixed value of W(L0, L0) as a large number when studying states
of (unperturbed) angular momentum L0; this helps to avoid underflow as that initial value
diffuses out through the network to give all the other W(N, L) their correct relative values. A
value as large as 1050 was found to work satisfactorily. A more subtle procedure involving a
scaling factor such as K(N+L) was also built into our program but the simple device of using
a large W(L0, L0) sufficed to obtain the results presented in this paper. To start off the first
shooting calculation for the chosen angular momentum it is necessary to use an input energy
estimate. Since for the chosen angular momentum (which we denote by L0) there will be many
possible unperturbed energies, the best procedure for weak magnetic fields is to use the initial
value −1/(2n2) so as to pick out the zero-field state with principal quantum number n. The
method has a tendency to ‘lock on’ to the state with the specified L and M which is nearest
in energy to the initially given energy; this is, of course, a common behaviour in shooting
methods.

3. The variation of E with basis size

As an example of how the multiple shooting method works in practice we present in table 1
what happens when the number of participating L components is increased for the case of the
1s state at a field strength γ = 0.3. The NU value was increased from 20 to 60 in steps of 10
to check that the limiting values for the L columns are reached. Since we only used normal
double precision there was some degree of fluctuation in the last decimal digits but the stability
attained was good enough to give 13 digit energies, as established by several test calculations
in which existing results from the literature and from the method of [1] gave reference energies.
Table 1 shows that to obtain 13 digit accuracy for this case it is necessary to include basis
functions up to L = 12 and this conclusion will be valid for any matrix diagonalization method
using ordinary basis states.
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Table 2. The energies of the two coupled states with M = 0 arising from the n = 3 degenerate
level of hydrogen. The energy of the state with zero-field label 3s is given first, followed by that
of the state with zero-field label 3d. The β value of 0.4 sufficed for the first three small γ values,
a β value of 1–1.3 was used for the remaining γ values. The five or six digit results of [5] agree
with those from the multiple shooting method.

γ E(3s,3d)

0.0005 −0.055 550 661 426 2433
−0.055 554 262 747 8249

0.001 −0.055 535 985 023 4166
−0.055 550 385 087 0114

0.002 −0.055 477 368 745 8426
−0.055 534 885 846 4327

0.010 −0.053 669 329 575 3116
−0.055 047 921 912 9920

0.02 −0.048 634 233 895 344
−0.053 616 935 468 314

0.03 −0.041 533 175 335 356
−0.051 444 850 277 11

0.04 −0.033 280 283 364 89
−0.048 695 382 199 87

4. Calculations for degenerate states

As stated in the introduction, the main point of our calculations is to see how the multiple
shooting method can handle degenerate states. To treat the 3s and 3d0 states we require a set
of even L values, which we take as running from 0 to 20 in steps of 2 (although less than 20
would suffice for the low γ values). To pick out the n = 3 states we use −0.05 as the initial
energy and set M = 0. The only difference between the two states is that for 3s the L = 0
column is reserved for the energy shooting, while for the 3d0 state it is the L = 2 column which
is used. By letting NU increase from 70 to 90 to ensure that limiting values were reached we
obtained the results shown in table 2. We checked that our results agree with those of [5] to
the five or six digits given in [5] (after suitable rescaling of the results of [5]). It is clear that
the multiple shooting method gives highly accurate results. Table 3 shows our results for the
four degenerate states with M = 0 which arise from the n = 4 level of hydrogen. For the p and
f states the L values are, of course, odd integers rather than even integers. In the tables we give
some results for very small γ values so as to permit the numerical extraction of perturbation
coefficients. Thus for example if we write the low field energy of a state of principal quantum
number n as

E(γ ) = −1/(2n2) + E1γ
2 + E2γ

4 + · · · . (7)

we can extract from the low field data the results E1(3d0) = 5.171 485 23 and E1(3s0) =
19.578 5147. For the set of states with M = 0 and n = 4 we obtained the numerical values
E1(4s0) = 65.323 798, E1(4p0) = 38.649 109, E1(4d0) = 18.676 192, E1(4f0) = 13.350 888.
The state labels, of course, are zero field ones but the actual wavefunctions will be linear
combinations of the initial LM types. However, the ranking of energies implied by these E1

values is that which results from the spherical approximation splitting which appears before the
inter-state coupling is turned on and for which each state retains its original angular momentum
labels. Grozdanov and Taylor [6] obtained analytic results for E1 and E2 for some low-lying
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Table 3. The energies of the four states with M = 0 arising from the n = 4 degenerate level of
hydrogen. The energies are given in the order of increasing angular momentum (4s,4p,4d,4f). The
β value used gradually increased from 0.3 to 0.6 as γ increased.

γ E(4s,4p,4d,4f)

0.0005 −0.031 233 677 625 1581
−0.031 240 342 428 1327
−0.031 245 333 063 3010
−0.031 246 663 000 0866

0.001 −0.031 184 812 793 3940
−0.031 211 425 901 9023
−0.031 231 357 483 0846
−0.031 236 660 642 5498

0.002 −0.030 990 851 407 4946
−0.031 096 586 351 1385
−0.031 175 827 349 0101
−0.031 196 779 265 7276

0.004 −0.030 236 982 912 9948
−0.030 649 539 952 9025
−0.030 959 302 558 9110
−0.031 039 210 936 2615

0.008 −0.027 490 731 009 7609
−0.029 017 858 800 5190
−0.030 165 791 508 2648
−0.030 435 762 137 9031

degenerate states. Our quoted results for E1 are in close agreement with the exact results
given in [6], as are our rough estimates of E2, which gives us confidence in the accuracy of the
numerical accuracy of our multiple shooting approach, particularly since we did not find the
results of [6] until after making our numerical estimates. For the n = 3 and n = 4 calculations
we only have to deal with two-fold splittings of the M = 0 levels (e.g the L pairs (0, 2) and (1,
3) for n = 4). For n = 5, however, the three-fold splitting of type (0, 2, 4) appears. We found
that the iterative shooting method of this paper has a strong tendency to move towards the
highest and the lowest levels in a group of split states. Thus for the (0, 2, 4) family it tends to
give the 0 and the 4 levels but is difficult to stabilize when the L = 2 level is sought. To avoid
this incomplete description of the splitting we have studied the M = 1 splitting, for which the
appropriate L families are (1, 3) and (2, 4). Table 4 thus shows the n = 5 splittings results for
the states with M = 1. Only the five or six digit results of [5] seem to be readily available in
the literature and our results are in accord with them, while giving greater accuracy.

5. An interesting Rydberg state example

When dealing with excited states the multiple shooting method as presented here should be
regarded as appropriate for weak fields, since it is only guided towards a particular state (of the
specified LM type) by giving the initial energy of the region in which to search. For a strong
field the calculation might collapse to the lowest eigenvalue of the desired type, although this
effect can be diminished by building up the field slowly and following the trajectory of a
particular zero-field state. For the lowest state in an LM family this possibility of collapsing
is in any case not present and so strong fields can be handled (for example the case γ = 1 for
the ground state, where setting β = 5 leads to the result E = −0.331 168 896 733). As noted
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Table 4. The Zeeman energies for the n = 5 states with M = 1. The value of β used increased
from 0.2 to 0.4 as the value of γ increased. The linear Zeeman term γ M/2 has been included in
the displayed energies.

L γ E

1 0.0005 −0.019 709 848 482 093
0.001 −0.019 340 288 704 072
0.002 −0.018 374 456 593 161
0.004 −0.015 665 928 528 153
0.008 −0.012 223 879 921 212

2 0.0005 −0.019 723 642 944 629
0.001 −0.019 395 132 859 622
0.002 −0.018 588 962 761 991
0.004 −0.016 465 799 604 409
0.008 −0.014 923 952 064 118

3 0.0005 −0.019 734 002 958 254
0.001 −0.019 436 305 947 552
0.002 −0.018 749 681 586 250
0.004 −0.017 058 093 939 757
0.008 −0.016 813 515 251 206

4 0.0005 −0.019 738 913 574 790
0.001 −0.019 455 760 089 764
0.002 −0.018 824 663 656 722
0.004 −0.017 321 131 161 145
0.008 −0.017 526 270 049 135

in section 1 the strongest terrestrial magnets give a magnetic field corresponding to a γ value
of about 0.000 213.

However a γ value of 0.000 02 (about 4.7 T) is more typical and it was this value which
was used in two studies of the n = 23 Ryberg states of the hydrogen atom [7, 8]. The
calculations of those two works used large basis sets in a more traditional kind of method
and so were able to give a list of the many states in the n = 23 manifold together with their
perturbed energies. It was thus amusing and surprising to find that the simple approach of the
present work was able to locate a subset of the states described in [7, 8], by giving (as noted
in section 4) the highest and lowest states in each group of states arising from the splitting of
a degenerate level.

The unperturbed energy of the n = 23 manifold is close to −0.000 945 and so specifying
this as the initial trial energy with γ = 0.000 02 would be the straightforward way to apply
the present method to the n = 23 manifold. We tried this procedure, varying the LM angular
momentum type. Table 4 shows the results. The energies obtained for the restricted subset of
states attainable by our method are much more accurate than those of [7] and are in accord
with the results of high accuracy given in [8], although we can obtain results for some families
of states which did not appear in the tables of [7] and [8]. We suspect from our results that
the labels 1+ and 1− in the tables of [8] are accidentally transposed. We also note that the
energy units used in [8] are Rydbergs rather than the atomic units used here and in [7]. Of
particular interest are the near degeneracies between some pairs of states which were found to
have the same energy in [7] but which are shown to have a very small but nonzero splitting by
our calculation and by the method of [8]. This near—degeneracy for high n values has been
explained in terms of an effective potential of double well form, with small splitting between
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Table 5. The Zeeman levels for the hydrogen n = 23 level as given by the multiple shooting method
for γ = 0.000 02, with β values 0.045–0.06 and an initial energy of −0.000 94. The chosen (M, L0)
pair is shown together with the resulting Zeeman energy. The linear shift γ M/2 has been included
in these energies.

(M, L0) E

(0,0) −9.123 506 848 480
(0,1) −9.438 673 731 165
(0,2) −9.438 673 731 579
(0,3) −9.148 927 987 648
(1,1) −9.023 890 526 272
(1,2) −9.049 305 222 916
(1,3) −9.326 595 760 590
(1,4) −9.326 595 778 585
(2,2) −8.925 041 500 452
(2,3)a −9.150 436 864 937
(2,4) −9.415 572 242 009
(2,5)a −9.415 571 881 452
(3,3)a −9.126 959 593 457
(3,4)a −9.152 322 722 308
(3,5)a −9.405 613 344 457

a Energies for states not covered by the works [7, 8]. Note the near-degeneracies for three pairs
of states with the same M. These states are degenerate at the level of precision used in [7]. The
energies are shown in units of 10−4 atomic units.

Table 6. The variation of the [(0, 1),(0, 2)] degeneracy with the principal quantum number n for γ =
0.00002, with β = 1/n and trial energy −1/(2 n2). The splitting has a sign which alternates between
successive n values and a magnitude which decreases as n increases. The energies are shown in
units of 10−3 atomic units.

n E(0,1), E(0,2)

16 −1.952 681 530 420 31
−1.952 681 519 539 02

17 −1.729 571 259 331 87
−1.729 571 264 608 01

18 −1.542 577 306 751 83
−1.542 577 304 249 05

19 −1.384 297 490 434 31
−1.384 297 491 595 25

20 −1.249 132 545 580 47
−1.249 132 545 054 53

21 −1.132 783 729 081 67
−1.132 783 729 313 89

22 −1.031 906 530 740 63
−1.031 906 530 641 01

even and odd parity energy levels [9, 10]. Table 6 shows the variation of one of these level
splittings as a function of n, as found by the multiple shooting method of this work.

6. Conclusion

This short work is intended to show that the multiple shooting method is an effective way
of handling the weak field Zeeman problem for degenerate excited states of the hydrogen
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atom. The approach can be regarded as a Hill determinant one in the spirit of those matrix
methods which use a non-orthogonal basis set. Our basis set is equivalent to the Sturmian
basis set used in [7], except that in [7] the basis set was used in the traditional manner, thus
leading to a generalized matrix eigenvalue problem which needed the evaluation of matrix
elements and overlap integrals. Alternatively, our multiple shooting method can be regarded
as a discretized approach to solving the coupled family of differential equations used to treat
the field-induced coupling of angular momenta in the works [5, 11]. Although we have given
only a few specimen results to indicate the level of accuracy which can be achieved, it is clear
that the present method has some of the flexibility of the recently published moment method
[1], plus the ability to handle states which are not accessible to that method. For example, it
is clearly a simple task to add another term to the recurrence relation (3) to represent an extra
term αr2 in the applied field. By using an appropriate sum of r2 and x2 + y2 we can treat the
static Van der Waals interaction −λ (r2 + z2) as in [1], or by adding a very small increment
to a term in the Hamiltonian we can calculate expectation values by energy differencing as
in [1].

The multiple shooting calculation for the 3s–3d splitting was first carried out in 1999 at
the Observatory of Besancon by one of the authors (JPK). The present extension of the method
was developed recently in order to extend the iterative type of calculation used in [1] so as
to treat a larger range of states, both degenerate and non-degenerate. Since the intention of
the authors is to encourage other workers to apply and develop the approach described here,
an appendix is added to explain in more detail how the multiple shooting process is actually
implemented.

Appendix The basic principles of the multiple shooting method

The aim of the shooting calculation is to find the value of E when shooting along the L = L0

column and to find W(L, L) when shooting along any other L column. Once the value of W(L,
L) is found of course, the other elements W(N, L) are automatically filled in by the shooting
process. The basic quantities required are the derivatives of the W(N, L) with respect to E for
the L0 column and to W(L, L) for the other columns. An economical way to proceed is to call
both derivatives WE(N, L), with their interpretation and use varying according to whether or
not L equals L0. Thus only one array is set up for the derivatives. The calling program for
the shooting subroutine sends an index I which is 1 for L = L0 and 0 for any other L. The
WE recurrence relation is found by differentiating equation (3) of the text while remembering
that for shooting along the L column we must only perform the differentiation on terms which
have the second index L. The resulting recurrence relation thus becomes

1/2(N + 2 − L)(N + 3 + L)(N + 2, L) = [(N + 2)β − Z]WE(N + 1, L)

− [E + β2/2]WE(N,L) + λD(L)WE(N − 2, L) − I.W(N,L), (A1)

(note how the factor I is used to change between the two types of derivatives). This enables
the W(N, L) and the WE(N, L) columns to be found together by shooting along the L column,
starting with W(L − 1, l) = 0 in all cases and with W(L, L) equal to 0 initially for L not equal
to L0 or to the large chosen fixed value when L = L0. WE(L, L) is 0 for L = L0 and 1 for all
other L values. The value of W(NU, L) is returned to the main program, which then works out
a Newton’s method shift given by the ratio SH = – W(NU, L)/WE(NU, L). This shift is then
used to find the change in E if L = L0 or in W(L, L) for any other L. For the E calculation it is
useful to use a ‘maximum shift’ parameter SHM to keep the calculation stable on a particular
level. The shift as calculated above is then replaced by SH/[1 + ABS(SH/SHM)], which
damps down the amplitude (but not the direction) of the shift. Several successive shootings
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are performed along the column until the calculated E or W(L, L) has converged. The tactics
of the shooting process is to some extent a matter of choice. For example, we can decide how
many L columns to include in the process at any stage, although experience suggests that the
number of included columns should be increased gradually, so that the calculated eigenvalue
slowly changes towards its final ‘saturated’ value when all necessary L subspaces have been
included. The NU value can either be increased slowly or left at some sufficiently high value
determined by a preliminary trial computation. The set of coefficients A(L), B(L) and D(L)
can be worked out at the start of the calculation and stored so as to be immediately available
when needed during the shooting process along any column.
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